Low-dimensional gap plasmons for enhanced light-graphene interactions

نویسندگان

  • Yunjung Kim
  • Sunkyu Yu
  • Namkyoo Park
چکیده

Graphene plasmonics has become a highlighted research area due to the outstanding properties of deep-subwavelength plasmon excitation, long relaxation time, and electro-optical tunability. Although the giant conductivity of a graphene layer enables the low-dimensional confinement of light, the atomic scale of the layer thickness is severely mismatched with optical mode sizes, which impedes the efficient tuning of graphene plasmon modes from the degraded light-graphene overlap. Inspired by gap plasmon modes in noble metals, here we propose low-dimensional hybrid graphene gap plasmon waves for large light-graphene overlap factor. We show that gap plasmon waves exhibit improved in-plane and out-of-plane field concentrations on graphene compared to those of edge or wire-like graphene plasmons. By adjusting the chemical property of the graphene layer, efficient and linear modulation of hybrid graphene gap plasmon modes is also achieved. Our results provide potential opportunities to low-dimensional graphene plasmonic devices with strong tunability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graphene plasmonics: a platform for strong light-matter interactions.

Graphene plasmons provide a suitable alternative to noble-metal plasmons because they exhibit much tighter confinement and relatively long propagation distances, with the advantage of being highly tunable via electrostatic gating. Here, we propose to use graphene plasmons as a platform for strongly enhanced light-matter interactions. Specifically, we predict unprecedented high decay rates of qu...

متن کامل

Efficient plasmonic emission by the quantum Čerenkov effect from hot carriers in graphene

Graphene plasmons have been found to be an exciting plasmonic platform, thanks to their high field confinement and low phase velocity, motivating contemporary research to revisit established concepts in light-matter interaction. In a conceptual breakthrough over 80 years old, Čerenkov showed how charged particles emit shockwaves of light when moving faster than the phase velocity of light in a ...

متن کامل

Enhanced four-wave mixing in graphene-silicon slow-light photonic crystal waveguides

Articles you may be interested in Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal Wideband group velocity independent coupling into slow light silicon photonic crystal waveguide Appl. Electro-optic polymer infiltrated silicon photonic crystal slot waveguide modulator with 23 dB slow light enhancement Ap...

متن کامل

Graphene and active metamaterials: theoretical methods and physical properties

The interaction of light with matter has triggered the interest of scientists for long time. The area of plasmonics emerges in this context through the interaction of light with valence electrons in metals. The random phase approximation in the long wavelength limit is used for analytical investigation of plasmons in three-dimensional metals, in a two-dimensional electron gas and finally in the...

متن کامل

Tunable omnidirectional strong light-matter interactions mediated by graphene surface plasmons

In this theoretical work, we report on voltage-controllable hybridization of electromagnetic modes arising from strong interaction between graphene surface plasmons and molecular vibrations. The interaction strength depends strongly on the volume density of molecular dipoles, the molecular relaxation time, and the molecular layer thickness. Graphene offers much tighter plasmonic field confineme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017